
FreeBSD and Windows Environments
FreeBSD is Uniquely Positioned to Help Deploy, Virtualize, and Serve

Microsoft Windows Production Environments

Michael Dexter

AsiaBSDCon 2024, Taipei, Taiwan

Abstract

The FreeBSD open source operating system[1] provides a powerful set of features to facilitate the
deployment, virtualization, and serving of Microsoft Windows[2] environments ranging from home research
labs to enterprise deployments. FreeBSD’s exemplary integration with the OpenZFS file system and volume
manager, its bhyve hypervisor, its third party ports and packages, and its overall consistent administrative
experience empower operators when performing tasks relating to:

Deployment

● Windows Product Registration

Key Retrieval

● Automated Installation

● Remote Console and Desktop Access

Virtualization

● Server Virtualization

● Desktop Virtualization

Serving

● Bi-directional, SMB, NFS, and iSCSI Sharing

● Active Directory Domain Participation

● Active Directory Domain Serving

● NTFS Mounting and Management

● Data Synchronization and Replication

● Native Windows OpenZFS Deployment

This paper describes each of these facilities with examples of their usage.

Introduction

FreeBSD and Microsoft Windows have had
significant impacts on computing: BSD Unix, from
which FreeBSD descends helped produce the
interoperable Internet and the first
hardware-agnostic computing, while Microsoft
Windows has dominated business and home
desktop computing. The communities surrounding
these two ecosystems are often unrecognizable to
one another, but were united with the seminal year
2000 publication of “The FreeBSD Corporate
Networker’s Guide”[3] which provides inspiration
for this paper. With FreeBSD-derived systems
such as TrueNAS CORE and pfSense/OPNsense

providing critical infrastructure to Windows
environments around the world, we must
appreciate the decades-long symbiotic relationship
between these ecosystems.

Deployment

Hardware Data Collection

The observability of FreeBSD and Microsoft
Windows systems to an operator could not be more
antithetical. A FreeBSD user is greeted by a
detailed boot log of kernel and system
initialization, while a Windows user is greeted by a
metaphor for a rotary telephone and a scenic
landscape. This stark contrast has long provided an

opportunity for Unix-like tools such as the Cygwin
[4] GNU environment, and single-purpose tools as
ifconfig(8), acpidump(8),
smartctl(8), OpenSSH, rsync(8),
dmidecode(8), and storage-related utilities
such as FreeBSD gpart(8) and
nvmecontrol(8). These tools can be used to
retrieve MAC addresses from network interfaces,
Windows Product Registration keys from ACPI
tables, provide shell access, synchronize data,
provide hardware information, format disks, and
manage NVMe devices respectively. While some
of these tools have been ported to Windows, some
of them must be run in hardware or virtualized
FreeBSD environments for maximum
effectiveness. For example, FreeBSD’s
gpart(8) GPT partition management tool is
vastly more capable and intuitive than any
Windows-native tool, and nvmecontrol(8)
can provide basic NVMe namespace management
and block size configuration in ways that are not
possible with standard Windows utilities. As these
are often one-time administrative data collection
tasks, they are best performed on a host that is
temporarily booted to FreeBSD. For example, to
retrieve a Windows Product Registration Key with
the FreeBSD sysutils/acpica-tools
package:

/usr/local/bin/acpidump | \
grep -A5 MSDM | tail -n3 | \
cut -c60-75 | xargs echo | \
sed -e 's/^\.*//' \
-e 's/ //g'

This ability should be trivial to add to the in-base
acpidump(8).

NVMe Block Size Configuration

To identify an NVMe device and format for 4Kn
block size: (WARNING: This will erase all data on
the device)

nvmecontrol devlist
nvme0: CT500P3PSSD8

nvme0ns1 (476940MB)
nvmecontrol identify nvme0ns1 | \
grep "LBA Format"

Number of LBA Formats: 2
Current LBA Format: LBA Format #00
LBA Format #00: Data Size: 512
Metadata Size: 0 Performance: Better
LBA Format #01: Data Size: 4096
Metadata Size: 0 Performance: Best

nvmecontrol format -f 01 nvme0ns1

Reboot the system to enable the new block size.

Partition Deletion

To destroy partitions on storage device
/dev/ada0 as is often required to allow for
further management by Windows or macOS
graphical disk management utilities.

gpart destroy -F /dev/ada0

S.M.A.R.T. Storage Device Health

The smartctl(8) storage device S.M.A.R.T.
health monitoring utility from the
sysutils/smartmontools package is used
in a similar manner both within and outside of
Windows, using Linux-style device naming on
Windows:

smartctl.exe -a /dev/hda

Storage Device Imaging

Prior to system deployment or redeployment, some
systems may need to be preserved in their previous
state for archival or forensic purposes. The in-base
FreeBSD camdd(8) command provides disk
imaging facilities that consistently match the block
count of a storage device as reported by
diskinfo(8):

diskinfo da1
da1 512 4000787029504
7814037167 4096 0 486401255
63

camdd -i file=/dev/da1,bs=1M \
-o file=4tb.raw

ls -l
-rw------- 1 root wheel
4000787029504 Sep 23 16:20 4tb.raw

If a storage device proves unreliable when
imaging, the ddrescue(1) utility from the
sysutils/ddrescue port provides resumable,
best effort recovery with options such as -d direct
access without caching and -r3 retry three times:

ddrescue -d -r3 /dev/da1 \
4tb-ddrescue.raw ddrescue.log

The native windows VHDX disk image format can
be converted to the universal raw format with the
qemu-img(1) utility from the qemu-tools
package.

qemu-img convert -f vhdx \
-O raw 4tb.vhdx 4tb.raw

The resulting raw disk image can be attached with
mdconfig(8), booted in the QEMU[5]
emulator, or the bhyve(8) and FreeBSD/Xen
hypervisors. It can also be transferred to a ZFS
volume or hardware storage device using
camdd(8) or dd(1).

Storage Device Mounting

The FUSE-based ntfs-3g(8) utility from the
sysutils/fusefs-ntfs package
compliments this imaging ability with a reliable,
albeit limited-performance facility to mount
NTFS-formatted partitions in FreeBSD.

mdconfig 4tb.raw
md0
gpart show md0

=> 34 7814037100 md0 GPT (3.6T)

34 262144 1 ms-reserved (128M)

262178 2014 - free - (1.0M)

264192 7813771264 2 ms-basic-data (3.6T)

7814035456 1678 - free - (839K)

kldload fusefs

ntfs-3g -o ro /dev/md0p2 /mnt

ls /mnt/

$RECYCLE.BIN WindowsImageBackup

Bitlocker Considerations

Bitlocker is the native Windows data encryption at
rest solution that, like all data encryption solutions,
is prone to unintentionally isolating authorized
users from critical data. It is important to back up
and protect Bitlocker decryption keys and always
be aware if a system has Bitlocker enabled.
Trusted Platform Module (TPM)-equipped systems
preserve Bitlocker keys in hardware for convenient
decryption using passphrases or PINs, but will lose
those keys if hardware is replaced and in some
cases, if system firmware is updated. Automatic
firmware updates to systems that are not known to
be Bitlocker-enabled can result in catastrophic data
loss. Bitlocker-encrypted file systems can be
mounted on FreeBSD with the devel/libbde
package:

bdemount -p <password> /dev/ada0p2 /mnt

Automated Windows Installation

Microsoft desktop and Server Windows
installations targeting the QEMU emulator or the
bhyve(8) and FreeBSD/Xen hypervisors can be
automated with the inclusion of a
autounattend.xml file located in the top
directory of an installation ISO image.
xmllint(1) from the textproc/libxml2
package can validate the autounattend.xml
file and 7z(8) from the archivers/7-zip
package, and mkisofs(8) from the
sysutils/cdrtools package can be used to
perform installation ISO extraction and
remastering.

mkdir iso

cd iso

7z x /path/to/windows.iso

xmllint /path/to/autounattend.xml

cp /path/to/autounattend.xml .

cd ..

mkisofs \

-b boot/etfsboot.com \

-no-emul-boot -c BOOT.CAT \

-iso-level 4 -J -l -D \

-N -joliet-long \

-relaxed-filenames -v \

-V "Custom" -udf \

-boot-info-table -eltorito-alt-boot \

-eltorito-platform 0xEF \

-eltorito-boot \

efi/microsoft/boot/efisys_noprompt.bin \

-no-emul-boot \

-o install.iso ./iso

Note that while FreeBSD’s libarchive(3)
will support 7z and ISO9660 formats, it does not
yet support the UDF format of windows
installation DVDs. Nor does makefs(8) support
all attributes of the UDF DVD.

Furthermore, the sysutils/wimlib package
includes utilities to manipulate Windows Imaging
(WIM) archives for further deployment
customization.

Remote Access

Recent versions of Microsoft Windows include the
OpenSSH[6] suite of remote shell access utilities
such as ssh(8), scp(8), and sftp(8), and
the sshd(8) daemon as “optional” features. If
not included, these tools can be obtained from
various sources and remain invaluable regardless
of their origin. RDP remote desktop access is
supported by the open source xfreerdp(1)[7]
(net/freerdp), and remmina(1)[8]
(net/remmina) clients, which are available on
FreeBSD and most Unix-like operating systems.
When configured with familiar facilities such as
pre-shared SSH keys, FreeBSD and Windows
systems can perform as indistinguishable,
bi-directional peers for more-consistent
administration.

If OpenSSH is neither pre-installed nor an
available “option”, it can be searched for, installed,
and enabled with the following syntax:

Get-WindowsCapability -Online | ? Name -like

'OpenSSH*'

Add-WindowsCapability -Online -Name

OpenSSH.Client~~~~0.0.1.0

Add-WindowsCapability -Online -Name

OpenSSH.Server~~~~0.0.1.0

Start-Service sshd

Set-Service -Name sshd -StartupType 'Automatic'

Get-NetFirewallRule -Name *ssh*

Virtualization

The FreeBSD hypervisor bhyve(8)[9] has
supported Microsoft Windows guests in
production environments[10] since 2015 and
performs admirably with VirtIO-backed storage
and networking, or SR-IOV network hardware
virtualization, and NVMe storage emulation.
Windows desktop and Server virtual machines are
both well-supported, and the built-in bhyve
UEFI-GOP VNC server can be replaced with
native Windows RDP for remote desktop access
over secure protocols. Beyond traditional
server-based host/guest virtualization, FreeBSD is
institutionally used for desktop virtualization
where the underlying system is FreeBSD for
real-time computing purposes but is visually and
operationally Windows to the end-user[11]. With
nearly a decade of production-use experience,
FreeBSD’s bhyve is a proven alternative to
proprietary virtualization solutions such as
Microsoft Hyper-V and Broadcom VMware.

Windows on bhyve Considerations

Early Windows on bhyve deployments were very
particular with regard to configuration but now
only require that a few conditions be met:

● The Low Pin Count (lpc) device must be
on PCI slot 31

● Windows does not ship with VirtIO drivers
and emulated devices must be used until
they are the drivers installed

● TPM pass-through is supported on
FreeBSD 14.0 and later, and TPM
emulation is under active development

While not a requirement, Windows virtual
machines have been observed to perform
particularly well[12] with bhyve’s NVMe
emulation thanks to its authentic multiple queue
emulation.

OpenZFS Storage

While the OpenZFS[13] file system and volume
manager provides unrivaled data safety guarantees
when used for the backing storage of Windows
virtual machines, its snapshot and rollback
facilities are invaluable with Windows file servers
to mitigate:

● Ransomware attacks
● Accidental data deletion
● Staged OS and application installation
● Application data restoration
● Failed OS updates

Snapshotting a virtual machine at its storage level
at every stage of installation allows for
instantaneous “undo” of misconfigurations or
failed installations. Applications that update their
data during software update can take advantage of
OpenZFS rollbacks to achieve “fresh”
installations:

● Install and snapshot the operating system
● Install old application version
● Import application data
● Upgrade the application
● Export application data
● Roll back the operating system
● Install new application version
● Re-import application data

OpenZFS also provides efficient data replication
via its snapshot zfs-send(8) and
zfs-receive(8) facilities, allowing for
efficient on-premises and off-site backups. A
virtualized Windows desktop backed by OpenZFS
storage would also have the advantage of being
efficiently backed up in its entirety, and being
bootable on a remote virtual machine that has
access to a participating backup.

Serving

As outlined in the FreeBSD Corporate
Networker’s Guide and confirmed with the popular
TrueNAS CORE[14] storage operating system,
FreeBSD has long provided SMB sharing services

to Windows guests with the option of Active
Directory participation.

FreeBSD itself can mount SMB shares with the
in-base mount_smbfs(8) utility, with limited
permissions preservation:

mount_smbfs -W MYDOMAIN \
//user@myserver/mysmb_share /mnt

If the SMB share proves to be of a level not
handled by mount_smbfs(8), the smbnetfs
utility from the
sysutils/fusefs-smbnetfs package is
available and can be used as follows:

mkdir ~/.smb

cp /usr/local/share/doc/smbnetfs-0.6.3/smbnetfs.conf \
~/.smb/

vi ~/.smb/smbnetfs.auth

auth 10.0.0.20 <user> <password>

chmod 600 ~/.smb/smbnetfs.auth

vi ~/.smb/smbnetfs.host

host 10.0.0.20 visible=true

mkdir ~/mnt

kldload fusefs

smbnetfs ~/mnt

ls ~/mnt/10.0.0.20
HelloWorld.txt

umount ~/mnt/10.0.0.20

SMB Sharing

A Samba[15] Server Message Block (SMB) share
can configured using the traditional POSIX/Unix
permissions model but Windows Active Directory
participation requires specific Access Control List
configuration and specifically use of the
aclmode=restricted ZFS property:

zfs create -o \
mountpoint=/data/share \
-o xattr=sa -o dnodesize=auto -o \
relatime=on -o \
aclmode=restricted -o \
aclinherit=passthrough \
zroot/data/share

setfacl -R -m
owner@:full_set:fdI:allow,group@:m
odify_set:fdI:allow,everyone@::fdI
:allow /data/share

setfacl -m
owner@:full_set:fd:allow,group@:mo
dify_set:fd:allow,everyone@::fd:al
low /data/share

The accompanying Samba configuration file reads:

cat /usr/local/etc/smb4.conf

[global]

vfs objects = zfsacl streams_xattr

nfs4:chown = true

use sendfile = yes

block size = 4096

server smb encrypt = desired

server string = Samba Version %v

netbios name = nas

realm = dc.mydomain.com

workgroup = MYDOMAIN

security = ADS

winbind enum groups = Yes

winbind enum users = Yes

winbind nss info = rfc2307

idmap config *:range = 2000-9999

idmap config * : backend = tdb

[NAS]

path = /data/share

writable = yes

browsable = yes

read only = no

public = no

create mode = 0666

directory mode = 0755

Active Directory Participation

Samba provides the ability for a host to join a
Windows Active Directory domain for user
authentication, and to serve as a secondary or
primary domain controller. As with any Active
Directory participation, it is exceedingly important

that time be synchronized on all participating
systems and that forward and reverse DNS be
correctly configured. Samba provides a built-in
DNS server and all participating hosts must be
configured to first query the DNS server of the
authoritative domain controller.

Active Directory Domain Membership

For this Samba host to join a Windows Active
Directory domain controller for user
authentication, /etc/nsswitch.conf must
be modified to read:

group: files winbind
passwd: files winbind

The join is performed with:

net ads join -U \
Administrator%<password>

Recent version of Samba allow this operation to be
performed with samba-tool(8):

samba-tool domain join \
samdom.example.com MEMBER \
-U administrator

Active Directory Domain Controller

Similar to an Active Directory join, Samba can
configure a domain controller service with the
interactive or scripted use of samba-tool(8):

samba-tool domain provision

The author’s freebsd-ad project[16] automates
this process with an interactive provisioning
procedure and suggested diagnostics syntax.

NFS Mounting and Sharing

Windows 7 Enterprise and later include Network
File System client support[17] and Windows
Server 2016 and later can provide NFS version
4.1-compatible shares[18].

iSCSI Sharing

Windows has a proven history of robust iSCSI and
Fiber Channel block storage support for want of
robust file-based sharing protocols. FreeBSD
provides robust iSCSI and Fibre Channel services
and is a proven platform for situations that require
native NTFS file systems that are backed by
OpenZFS file systems and volumes (ZVOLs).

With FreeBSD able to provide an iSCSI target to
Windows, the ntfs-3g(8) package allows for
the backing image or volume to be mounted
locally, providing “round trip” data portability:

truncate -s 10G /tmp/iscsi10G.raw

Generate a simple ctl.conf configuration file:

portal-group default {

discovery-auth-group no-authentication

listen 10.0.0.20

}

target iqn.2014-09.org.freebsd:target0 {

auth-group no-authentication

portal-group default

lun 0 {

path /tmp/iscsi10G.raw

size 10G

}

}

Validate the file:

ctld -f ctl.conf -t

Launch ctld(8) in debug mode:

ctld -f ctl.conf -d

Connect to the target with iSCSI Initiator under
Windows, format it with Disk Management, and
disconnect. Attach the image in FreeBSD with
mdconfig(8) and mount it with ntfs-3g(8):

mdconfig -a /tmp/iscsi10G.raw
md0

gpart show md0

=> 34 20971453 md0 GPT (10G)

34 32734 1 ms-reserved (16M)

32768 20934656 2 ms-basic-data (10G)

20967424 4063 - free - (2.0M)

kldload fusefs
ntfs-3g /dev/md0p2 /mnt
ls /mnt
$RECYCLE.BIN

The same procedures can be performed with a ZFS
volume if the vfs.zfs.vol.mode sysctl is
set to “0” while shared via iSCSI, and “1” if
accessed on the FreeBSD host:

zfs create -V 10g t14/tgt

file /dev/zvol/t14/tgt

/dev/zvol/t14/tgt: character special (0/128)

sysctl vfs.zfs.vol.mode: 1
sysctl vfs.zfs.vol.mode=0
vfs.zfs.vol.mode: 1 -> 0

Modify ctl.conf to include:

path /dev/zvol/t14/tgt

Upon return from the “round trip”, set
vfs.zfs.vol.mode back to “1” and it will be
visible as a GEOM provider and can be mounted
on the FreeBSD host:

gpart show

=> 34 20971453 zvol/t14/tgt GPT (10G)

34 32734 1 ms-reserved (16M)

32768 20934656 2 ms-basic-data (10G)

20967424 4063 - free - (2.0M)

ntfs-3g /dev/zvol/t14/targetp2 /mnt
ls /mnt
$RECYCLE.BIN

Data Synchronization and Replication

Microsoft Windows has an unfortunate history of
failing to preserve date stamps when copying files,
motivating the use of external tools such as the
included robocopy, and rsync[19] via
cwRsync[20] or DeltaCopy[21]. While these tools
provide schedulable data replication, they are
ultimately obsoleted by OpenZFS replication
which provides far greater data integrity
guarantees and efficiency.

Example rsync-like robocopy syntax:

robocopy D:\
E:\backups\previous-d-drive /MIR
/FFT /R:1 /W:1 /Z /XJD

OpenZFS on Windows

Experimental OpenZFS support[22] exists for
Windows desktop and Server, and the author was
the first known user of OpenZFS on Windows on
physical hardware, providing feedback to its
developers for years. OpenZFS on Windows or
“ZFSin” promises to be a significant step forward
in Windows file systems given the limited
adoption of its native ZFS-alternative, ReFS. To
view available disks by device name for use with
OpenZFS and to create a zpool:

wmic diskdrive list brief

... DeviceID ...

\\.\PHYSICALDRIVE1

zpool.exe create -O \
casesensitivity=insensitive -O \
normalization=formD -O \
compression=lz4 -O atime=off -o \
ashift=12 tank PHYSICALDRIVE1

Conclusions

FreeBSD is an excellent compliment to Windows
environments and can provide production-ready
deployment, virtualization, and serving resources
and facilities to them. The majority of the tools
mentioned are permissively-licensed and all of
them are freely-usable at no cost.

Acknowledgements

The author would like to thank the many FreeBSD
and related developers who advance open source
operating systems and add-on software to help
create robust, production ready environments.

References
1. FreeBSD.org
2. Microsoft.com/windows
3. FreeBSD-Corp-Net-Guide.com
4. Cygwin.com
5. QEMU.org
6. OpenSSH.org
7. FreeRDP.com
8. Remmina.org
9. bhyve.org
10. bhyvecon.org/bhyvecon2019-Tubnor.pdf
11. Beckhoff.com/en-us/products/automation/twincat-bsd-hyp

ervisor
12. KlaraSystems.com/articles/virtualization-showdown-freeb

sd-bhyve-linux-kvm
13. OpenZFS.org
14. TrueNAS.org
15. Samba.org
16. GitHub.com/michaeldexter/freebsd-ad
17. learn.microsoft.com/en-us/windows-server/storage/nfs/nfs

-overview
18. learn.microsoft.com/en-us/windows-server/storage/nfs/de

ploy-nfs
19. Rsync.samba.org
20. itefix.net/cwrsync
21. AboutMyIP.com/AboutMyXApp/DeltaCopy.jsp
22. GitHub.com/openzfsonwindows/openzfs/releases

