
The FreeBSD Appliance

Leveraging FreeBSD and Strategic Scripting to Deliver Storage and Virtualization Services

Michael Dexter

AsiaBSDCon 2023, Tokyo, Japan

Abstract

The FreeBSD Operating System has traditionally been viewed as a complete server and desktop solution or a collection of
core components for commercial appliance development. It has benefited from decades of academic, volunteer, and vendor
contribution of core components including its TCP/IP stack, multiple packet filters, Jail containers, the CAM/CTL storage
infrastructure, VNET and Netgraph virtual network stacks, the OpenZFS file system and volume manager, and the bhyve
hypervisor, all with a unified source tree and build environment. Many of these components have enabled high-profile
storage and networking product ecosystems but less-obvious developments are regularly occurring: FreeBSD is experiencing
extensive refinement in addition to major feature development, making for an unprecedented "out of the box" user
experience. FreeBSD 14.0-RELEASE will include subtle but powerful features including:

● Extensive compilation options
● Reproducible Builds
● makefs(8) -t zfs
● Jailed nfsd(8) and bhyve

● Emerging Packaged Base
● nullfs(5)-f file mounts
● CTL(4)/virtio_scsi(4) support
● Expanded libxo(3) and nvlist(9) support

This paper describes the new abilities enabled by these small and seemingly-unrelated features and their ability to reduce the
need for highly-customized FreeBSD appliance distributions. It will also describe strategies for following the "CURRENT"
development branch of FreeBSD without becoming a full-time release engineer. Finally, it will outline how contemporary
FreeBSD provides a meaningful storage and virtualization platform with minimal supplementary utilities.

Introduction

There are many ways to view an open source operating
system: As a “product” that happens to be “free as in
freedom”, as a platform on which other projects and
products are built, or as a collection of production-ready
implementations of open standards including RFCs. The
FreeBSD operating system and its ancestral Berkeley
Software Distribution appease each of these perspectives
resulting in equally visible and invisible use of them.
Common to every use of a flexible operating system like
FreeBSD is the building, or compilation of the operating
system, and the Release Engineering or delivery of the
installable results. FreeBSD has an established and
documented build and release process but has steadily
incorporated small but significant refinements that
together allow for unprecedented flexibility for
alternative building and releasing strategies using in-base
facilities. Alternative or custom releases of FreeBSD can
include minimal and single-purpose systems, computer
science education-oriented systems, and appliances
delivering network services.

The FreeBSD Release Process

Like most “BSDs”, FreeBSD is a self-hosted operating
system with a unified source tree that is officially
augmented with ported third party software or “ports”
which are pre-compiled into “packages”. The FreeBSD
source tree is generally compiled as a whole using the
procedures described in build(7). The build supports
cross-compilation for different instruction set
architectures and the results are archived as “distribution
sets”. These sets include base.txz for the base
operating system, src.txz for the corresponding
sources, and supplemental archives such as debugging
information and snapshots of the ported software and
documentation source trees. The distribution sets are in
turn installed by the installer bsdinstall(8) which
assists with system configuration via an
ncurses(3X)-based user interface. Alternatively, the
operating system can be installed directly from its build
objects using a sequence of make(1) commands as
described in build(7). Transparent to the user are
hundreds of build options and kernel configuration
options that determine what components are included,
excluded, or modified.

FreeBSD Compilation Options

The FreeBSD compilation options take the form of:

● make(1) options for traditional make(1)
parameters that control the build

● src-env.conf(5) environ(7) options
such as WITH_META_MODE

● Kernel MODULES_OVERRIDE described in
make.conf(5)

● Kernel options such as TMPFS/tmpfs(5)
● Kernel device(s) such as em/em(4)
● Build options described in src.conf(5)

such as WITH_LLDB and WITHOUT_LLDB

make(1) options follow the conventions established in
the 1970’s. src-env.conf(5) “source environments”
options control the make(1) environment with options
such as WITH_META_MODE that reuses cached build
artifacts to only recompile changed components, making
for significantly faster builds. MODULES_OVERRIDE
describes what select modules should only be compiled.
Kernel options determine what features are compiled
into the kernel such as the tmpfs(5) memory-backed
file system. Kernel device(s) determine what hardware
or virtual device drivers should be compiled, such as the
em(4) hardware Ethernet driver. Finally, the build
options described in src.conf(5) determine what
userland components should or should not be compiled.

Official FreeBSD Releases represent a curated collection
of the above compilation options and a user can recreate
a FreeBSD release(7) including installation media
with the following commands:

cd /usr/src
make buildworld buildkernel
cd /usr/src/release
make release

These steps produce binary objects in /usr/obj and
support concurrent compilation jobs with the -j flag to
make(1) which should not exceed the available number
of CPU threads. The authenticity of the resulting release
is further guaranteed with the
WITH_REPRODUCIBLE_BUILD build option, which
follows the guidelines of the Reproducible Builds[1]
project. The net result is a build strategy that is highly
consistent but the inherent flexibility of which is largely
unexplored.

makefs(8) -t zfs

While the FreeBSD build(7) relies primarily on on
make(1) and cc(1) and can be built on other
operating systems[2], the release(7) process relies

on additional utilities such as makefs(8) to perform
additional steps, namely producing bootable installation
media and “virtual” machine images in a variety of
formats including CD-ROM, “memstick”, .qcow2, RAW,
VHD, and VMDK. Of the “RAW” virtual machine image
exhibits a number of unique qualities:

● It is built from the /usr/obj compiled object
directory rather than extracted distribution sets

● It can be imaged to a physical machine boot
device such as a solid state drive

● It performs a growfs(8) operation on boot,
filling the remaining space of the boot device

● It supports BIOS and UEFI booting
● It is configured for DHCP networking
● It supports root on ZFS using ‘makefs -t

zfs’ with the VMFS=ZFS make(1) option
as of FreeBSD 14 and later

These qualities result in meaningful system boot images
that build efficiently and work on a variety of hardware
and virtual machines.

OccamBSD

The OccamBSD[3] project employs the various FreeBSD
compilation options to build minimal and purpose-built
RAW, ISO, and “memstick” boot images and provides
the basis for the FreeBSD Appliance strategies described
in this paper. OccamBSD uses build profiles to perform
build(7) and release(7) operations such as these
to generate a minimum system that be booted on the
bhyve(8)/vmm(4) hypervisor:

target="amd64"
target_arch="amd64"
cpu="HAMMER"
makeoptions=""

build_options="WITHOUT_AUTO_OBJ
WITHOUT_UNIFIED_OBJDIR
WITHOUT_INSTALLLIB WITHOUT_BOOT
WITHOUT_LOADER_LUA WITHOUT_LOCALES
WITHOUT_ZONEINFO WITHOUT_DYNAMICROOT
WITHOUT_FP_LIBC WITHOUT_VI"

kernel_modules="virtio"

kernel_options="SCHED_ULE
GEOM_PART_GPT FFS GEOM_LABEL CD9660
MSDOSFS TSLOG"

kernel_devices="pci loop ether acpi
uart ahci scbus cd pass virtio
virtio_pci virtio_blk vtnet
virtio_scsi virtio_balloon"

The resulting operating system is under 150MB in size
and boots in seconds. Adding features such as OpenZFS
and networking requires only selecting the appropriate
combination of compilation options. A firm coupling of
userland components to their dependent kernel resources
does not exist and this association must be performed
manually. In and of itself, OccamBSD provides various
insights into the true “base” components of FreeBSD:

● Revealing build(7), src.conf(5), and
release(7) bugs

● Revealing abandoned userland components
such as mlxcontrol(8) that can lack built
corresponding kernel device(s)

● Revealing components that lack build options
such as nfsd(8)

● Revealing under-documented subsystems such
as boot(8) whose documented FILES may
be out of sync with the operating system as a
result of vigorous development

● Revealing opportunities for the addition or
removal of components to or from the base
operating system

The OccamBSD strategy also provides a narrowed
context for operating systems education, auditing,
documentation, and quality assurance considering that it
isolates the lowest common denominator of FreeBSD
used by virtually all users in all environments.

FreeBSD Configuration

The lightly-configured bootable RAW images produced
by the FreeBSD release(7) process require further
configuration for all but the simplest deployments.
“Modern” system and “cloud” deployment employs
extensive automation in which systems are considered
commodity “livestock” rather than unique “pets”. This
philosophy is realized through countless available
configuration tools and ecosystems that broadly
demonstrate a common quality: idempotence.
Idempotence[5] is the “property of certain operations in
mathematics and computer science whereby they can be
applied multiple times without changing the result
beyond the initial application”. In practice this dictates
that a system should have a predetermined desired state
and its configuration tools should work to achieve and
maintain that state. At an extreme, a purpose-built,
idempotent system should be incapable of performing
anything but its desired functionality.

FreeBSD has long focused on an operator experience that
is consistent and intuitive, embracing the “Principle Of
Least Astonishment” or POLA[4]. In service of this
inherent consistency, FreeBSD provides the sysrc(8)
utility for making rc.conf(5) and

loader.conf(5) configuration file changes in a safe
manner. While sysrc(5) is not yet idempotent,
idempotence can be achieved with judicious use of the
test(1) assumption, string, and return value testing,
and ‘sysrc -c’ “check”:

hostname="occambsd"
if ["$(sysrc -c hostname=$hostname)"] ; then

echo "Hostname $hostname is correct"
logger "Hostname $hostname is correct"

else
echo ; echo "Setting hostname $hostname"
logger "Setting hostname $hostname"
sysrc hostname="$hostname"
service hostname restart

fi

Should sysrc(5) prove inadequate for a specific
configuration setting, traditional utilities with pattern
matching such as sed(1) can be used with far less
orientation than any given general-purpose configuration
management system. Such knowledge should also prove
more enduring than knowledge of proprietary
vendor-maintained syntax.

In-Base Services and Facilities

FreeBSD includes many facilities and services including
in-kernel NFS, iSCSI, and Fibre Channel servers, a mail
server, FTP and TFTP servers, and an SSH server. Each
of these have been proven with production workloads
and are included in many FreeBSD-based products and
services. While the configuration complexity of these
services can range from trivial to complex, an idempotent
approach can be taken and employ facilities such as the
rc.local(8) script that is executed at boot time.

Third Party Services and Facilities

For services and facilities not provided by the FreeBSD
base operating system, the ports(7) collection of
ported third party software and pkg(8) binary package
manager provide over 55,000 additional components and
options. In service of FreeBSD appliances, pkg(8)
supports the -r root directory flag that can specify a
unique root directory for package installation. pkg(8)
will determine the version and ABI of a given root
directory and install the correct packages when
cross-building and releasing a release. ‘pkg -r’ root
directories can include the FreeBSD release media:

cd /usr/obj/usr/src/amd64.amd64
cd release
pkg -r disc1 install -y tmux
chroot disc1 /etc/rc.d/ldconfig start
make cdrom

If employed with a hardware-imaged root-on-ZFS RAW
“virtual” machine image that can be configured in
advance or idempotently on boot, this strategy can
deliver commodity “livestock” systems that can be easily
re-imaged or updated via boot environments. While the
configured system can include packages, it need not
include the pkg(8) facility to manage them, reducing
the attack surface of the system in addition to the
reductions provided by custom compilation. Should the
system require customized packages, the
poudriere(8) bulk package builder provides the
infrastructure to facilitate and automate this task. Finally,
the FreeBSD “Packaged Base” initiative PkgBase[6]
aims to fully package the base operating system,
allowing for system updates with pkg(8) and
presumably selectively add and remove base components
without recompilation. Together these upstream tools
reduce the burden on downstream release engineers
tasked with tracking the FreeBSD CURRENT
development branch.

Service Containment

The FreeBSD jail(8) facility has provided a
container infrastructure since the 4.0-RELEASE of the
FreeBSD and has steadily introduced features such as
hierarchical/nested Jail support, VNET and Netgraph
virtual network stacks, resource controls, NFSd and
bhyve hypervisor containment, and nullfs(5) -f
file mount support available in FreeBSD 14. With the
introduction of ‘nullfs -f’ file mounts, a Jail’s root
file system can be constructed significantly of read-only
directories and files mounted from outside the Jail.
Combined with the OpenZFS[7] file system and volume
manager, write support can be dynamically enabled or
disabled, and directories/data sets can be dynamically
mounted or unmounted. In further service of reduced
attack surfaces, Jail userlands can be populated with
selective compilation as outlined above, or select
population using techniques such as ‘ldd -f '%p\n'
`which bhyve`’ to identify the dependencies of a
given binary. Essential base support files such as
/libexec/ld-elf.so.1 are easily identified with
limited experimentation. Combined, all of these facilities
can provide a highly-flexible, security-conscious “cradle
to grave” appliance environment for the delivery of
in-base services including nfsd(8), sshd(8), and the
bhyve(8) hypervisor using entirely in-base tools and
select idempotent scripting. Any such appliance can be
augmented with packaged third party software or
external appliances packed as virtual machine images.

CTL(4)/virtio_scsi(4) Storage

The FreeBSD appliance strategies outlined in this paper
make extensive use of in-base resources but special

attention must be given to the potential of OpenZFS, the
CAM Target Layer CTL(4), and virtio_scsi(4)
in combination. In addition to the dynamic read-only and
mounting/unmounting abilities of OpenZFS, the file
system and volume manager can also provide ZVOL
block devices. ZVOL synthetic block devices and RAW
disk images can be provided as hot-pluggable SCSI
devices via CTL(4) to a virtual machine’s
virtio_scsi(4) virtual SCSI bus. The result is
highly-flexible storage infrastructure for bhyve(8)
virtual machines.

libxo(3) and nvlist(9)

Finally, the steady incorporation of the libxo(3)
library for producing XML, JSON, and HTML output
from in-base utilities, and the nvlist(9) library for
reading configuration data name/value pairs with utilities
such as bhyve(8) promises to provide a
highly-structured and API-friendly administrative
environment for operators. The subtle but powerful
innovations made in the FreeBSD operating system
outlined in this paper are significantly reducing
dependence on external configuration and management
facilities. This trend empowers system operators by
allowing them to focus on learning the often-timeless
syntax and conventions of this highly-capable unified
computing environment.

Acknowledgements

The author would like to thank the many FreeBSD
developers who have resolved countless issues revealed
by this research over the last five years. The FreeBSD
Release Engineering team also deserves appreciation for
maintaining the infrastructure that enables this research.
This work would obviously also not be possible without
the individuals who have contributed the powerful new
features outlined in this paper.

References
1. reproducible-builds.org
2. wiki.freebsd.org/BuildingOnNonFreeBSD
3. github.com/michaeldexter/occambsd
4. en.wikipedia.org/wiki/Principle_of_least_astonishment
5. en.wikipedia.org/wiki/Idempotence
6. wiki.freebsd.org/PkgBase
7. openzfs.org

